This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

REACTION AND X-RAY MOLECULAR STRUCTURAL STUDY OF SOME MANGANESE SULFUR CLUSTERS

Satoru Onakaa; Yoshitaka Katukawa ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, Nagoya Institute of Technology, Nagoya, Japan

To cite this Article Onaka, Satoru and Katukawa, Yoshitaka(1996) 'REACTION AND X-RAY MOLECULAR STRUCTURAL STUDY OF SOME MANGANESE SULFUR CLUSTERS', Journal of Coordination Chemistry, 39: 2, 135 146
To link to this Article: DOI: 10.1080/00958979608022717
URL: http://dx.doi.org/10.1080/00958979608022717

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTION AND X-RAY MOLECULAR STRUCTURAL STUDY OF SOME MANGANESESULFUR CLUSTERS

SATORU ONAKA* and YOSHITAKA KATUKAWA
Department of Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan

(Received 28 December 1995; Revised 21 March 1996; In final form 2 May 1996)
$\left[\mathrm{Mn}(\mathrm{CO})_{3} \mathrm{l}_{2}(\mu-\mathrm{SPh})_{2}(\mu\right.$-dppfe $)(1)$ has been synthesized by treatment of $\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{12}$ (2) with $\mathrm{Me}_{3} \mathrm{NO}$ followed by reaction with dppfe (dppfe $=1,1^{\prime}$-bis(diphenylphosphino)ferrocene). $\mathbf{1}$ is also synthesized from $\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{8}(3)$ by the same procedure as above in an improved yield. The molecular structures of these three manganese-sulfur derivatives have been determined by single crystal X-ray diffraction techniques. The geometry around the manganese atoms in 1 is severely distorted from octahedral, while the distortions from octahedral arrangement are lessened in 2 and 3. The $\mathrm{Mn} \cdots \mathrm{Mn}$ separation ($3.675(5) \AA$) in $\mathbf{1}$ is close to those of $\mathbf{2}$ and $\mathbf{3}$.

Keywords: Manganese-sulfur cluster; 1, 1'-bis(diphenylphospino)ferrocene; X-ray structures

INTRODUCTION

In the past two decades, research on the synthesis, structure and properties of ironsulfur cubane clusters has developed tremendously as synthetic analogues of the active sites of iron-sulfur proteins. ${ }^{1}$ In contrast to the plethora of research for ironsulfur clusters, ${ }^{2}$ the chemistry of analogous manganese-sulfur cubane clusters has not to our knowledge been well explored. Recently we have found that highernuclearity clusters of the type $\left[\mathrm{RCCo}_{3}(\mathrm{CO})_{8}\right]_{2}(\mu$-diphos) are easily synthesized by reaction of $\mathrm{RCCo}_{3}(\mathrm{CO})_{9}$ with a diphosphine ligand (diphos) after decarbonylation with trimethylamine N -oxide, $\mathrm{Me}_{3} \mathrm{NO} .^{3}$ As an extension of this finding, we have applied a similar type of reaction to the manganese-sulfur cubane cluster,

[^0]$\mathrm{Mn}_{4}(\mu-\mathrm{SPh})_{4}(\mathrm{CO})_{12}$ (2). The present paper reports a unique degradation of the tetramer $\mathbf{2}$ by reaction with dppfe to the dimer, $\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]_{2}(\mu-\mathrm{SPh})_{2}(\mu$-dppfe $), \mathbf{1}$. X-ray structural analyses of $\mathbf{1 , 2}$ and $\mathbf{3}$ are also reported.

EXPERIMENTAL

Materials and General Procedures

All manipulations were made under a dry nitrogen and/or argon atmosphere. $\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{12}(\mathbf{2})$ and $\mathrm{Mn}_{2}(\mathrm{SPh}) 2(\mathrm{CO})_{8}(\mathbf{3})$ were synthesized by the literature method. ${ }^{4}$

Synthesis of $\left[\mathbf{M n}(\mathbf{C O})_{3}\right]_{2}(\mu-S P h)_{2}(\mu-d p p f e)(\mathbf{1})$

To a THF solution (15 mL) of $2(250 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added a methanol solution ($\sim 1 \mathrm{~mL}$) of $\mathrm{Me}_{3} \mathrm{NO}(27 \mathrm{mg}, 0.36 \mathrm{mmol})$. The orange color of the THF solution of $\mathbf{2}$ immediatey faded. After stirring at room temperature for 30 min ., an approximately $2 / 3$ volume of the solvent was removed by vacuum. Then, a THF solution (15 mL) of dppfe ($140 \mathrm{mg}, 0.25 \mathrm{mmol}$) was added by using a syringe; an orange color was recovered. After the mixture was stirred at ambient temperature for 3 h , the solvent was evaporated under vacuum to leave an orange solid. The solid was dissolved in a minimum of benzene and the solution was subjected to a Yamazen YFLC-600 medium-pressure liquid chromatography (Wako-gel C-200). From a yellow band eluted with benzene, the golden yellow product, $[\mathrm{Mn}(\mathrm{CO}) 3] 2(\mu$-SPh $) 2(\mu$-dppfe $)(\mathbf{1})$ was obtained in 10% yield. The reaction of the dimer, $\mathbf{3}$ with dppfe at room temperature after decarbonylation with $\mathrm{Me}_{3} \mathrm{NO}$ also afforded 1 in improved yield (22%). ${ }^{1} \mathrm{H}$-NMR ($90 \mathrm{MHz}, \mathrm{CDC}_{13}$): $\delta 3.21$ ($\mathrm{s}, 4 \mathrm{H}$), $4.10(\mathrm{~s}, 4 \mathrm{H}), 7.50(\mathrm{~m}, 20 \mathrm{H}), 8.05,8.18(\mathrm{~d}, 10 \mathrm{H})$. IR ($\mathrm{v}(\mathrm{CO})$ (Nujol)): 2019(m), 2003(vs), 1940(s), 1917(m), 1879(s). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured with a Hitachi R-90 spectrometer in the Fourier-transform mode. The IR spectra were recorded on a JASCO Valor-III FT-IR spectrometer.

X-Ray Data Collection and Structure Determination

Golden yellow, quartz-like single crystals of 1 were grown from a dichloromethanehexane (1:1) solution. A crystal with approximate dimensions $0.15 \times 0.15 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a MAC MXC ${ }^{3}$ diffractometer equipped with graphite monochromated Mo Ka radiation ($1=0.71073 \AA$). Diffraction data were collected at 154 K by use of an Oxford Cryostream Cooler to improve the intensity. Single crystals of $\mathbf{2}$ and $\mathbf{3}$ were grown from chloroform-hexane (1:2). An orange-yellow
crystal of 2 with approximate dimensions of $0.60 \times 0.30 \times 0.25 \mathrm{~mm}^{3}$ and a yellow crystal of $\mathbf{3}$ with approximate dimensions of $0.40 \times 0.30 \times 0.25 \mathrm{~mm}^{3}$ were mounted on the same diffractometer. However, data were collected at ambient temperature. The crystal data for $\mathbf{1 - 3}$ are collated in Table I. The structures were solved by a direct method (SHELXS-86) based on unique reflections and refined by a fullmatrix least-squares method on a Sun SP/Classic work station with a Crystan program package provided by MAC Science. No absorption correction was applied. Refinements on $\mathbf{1}$ and $\mathbf{2}$ were made anisotropically for non-hydrogen atoms and refinements on 3 were made anisotropically for non-hydrogen atoms and isotropically for hydrogen atoms. Structural refinements were made on a half molecule of 1 due to the symmetry requirement. The R factors in Table I refer to data with intensities greater than the indicated cutoff in σ. The molecular structures of 1-3 are shown in Figure 1-3. The atomic coordinates are listed in Table II and selected bond lengths angles are given in Table III. The $\left|\mathrm{F}_{0}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|$ tables and anisotropic temperature factor tables are available from the authors.

TABLE I Crystal data

Compound $\quad\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]_{2}(\mu-\mathrm{SPh})_{2}\left(\mu\right.$-dppfe) $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1)$		$\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO}) / \mathrm{I} 2(2)$	$\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{8}(\mathbf{3})$
Formula	$\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{FeMn}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{20} \mathrm{Mn}_{4} \mathrm{O}_{12} \mathrm{~S}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Mn}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$
Formula weight	1216.4	992.52	551.1
Crystal system	Orthorhombic	Monoclinic	Triclinic
Space group	Pnca	Aa	P^{1}
a/ $/ \AA$	16.996(5)	16.544(3)	11.158(2)
b/Å	21.245(4)	22.081(3)	12.363(4)
c / \AA	14.311(2)	11.529(2)	9.746(2)
α / deg	90	90	104.48(2)
β / deg	90	108.28(2)	113.22(1)
γ / deg	90	90	103.61(2)
V/Å	5167(2)	4000(1)	1108.8(5)
Z	4	4	2
$d_{\text {calcd }} / \mathrm{gcm}^{-3}$	1.56	1.65	1.65
Crystal dimens $/ \mathrm{mm}^{3}$	$0.15 \times 0.15 \times 0.15$	$0.60 \times 0.30 \times 0.25$	$0.40 \times 0.30 \times 0.25$
$\mu(\mathrm{Mok} \alpha) / \mathrm{cm}^{-1}$	7.58	9.44	8.54
Scan type	ω	20- ω	ω
Scan range	$1.39+0.35 \tan \theta$	$1.50+0.35 \tan \theta$	$1.78+0.35 \tan \theta$
Scan speed/deg. min^{-1}	4.0	5.0	5.0
20 max/deg	45	50	50
Temperature (K)	154	298	298
Unique reflections	3378	3529	3910
Reflections with			
$\left\|F_{0}\right\| \geq n \sigma\left\|F_{0}\right\|$	$1658(\mathrm{n}=5$)	$2709(\mathrm{n}=4)$	$3337(\mathrm{n}=3)$
No. of parameters refined	330	509	320
R	0.104	0.040	0.034
Rw	0.128	0.048	0.030

Mo $K \alpha$ radiation $(\lambda=0.71073 \AA) ; R=\left\|F o l-\left|F_{c} \| / / F_{0}\right| ; R_{w}=\left[\Sigma W\left(F_{0}-\left|F_{c}\right|\right)^{2} / \Sigma\left(F_{0}\right)^{2}\right]^{1 / 2}\right.$ where $w=1 / \sigma^{2}(F)$.

TABLE II Atomic coordinates and isotropic thermal parameters, $\mathbf{B e q}_{\mathrm{eq}}(\AA)^{2}$

atom	$\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]_{2}(\mu-\mathrm{SPh})_{2}(\mu-d p p f e) \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})$			$B(e q)$
	x	y	z	
Fe	-0.2491800	-0.0000900	0.4510 (2)	1.2 (1)
Mn	-0.1430 (2)	0.0115 (2)	0.1299 (2)	1.5 (1)
S	-0.2616 (3)	0.0685 (3)	0.1594 (4)	1.7 (2)
P	-0.0950 (3)	-0.0037 (3)	0.2856 (3)	1.2 (2)
C 1	-0.085 (1)	0.082 (1)	0.124 (1)	1.9 (6)
C 2	-0.166 (1)	0.024 (1)	0.005 (2)	1.6 (6)
C 3	-0.063 (1)	-0.037 (1)	0.094 (2)	1.9 (7)
01	-0.0508 (9)	0.1284 (8)	0.115 (1)	3.0 (5)
O 2	-0.1742 (9)	0.0348 (6)	-0.071 (1)	2.4 (5)
O 3	-0.0086 (9)	-0.0673 (8)	0.070 (1)	2.6 (5)
C 5	-0.147 (1)	0.025 (1)	0.388 (1)	1.5 (6)
C 6	-0.134 (1)	0.006 (1)	0.486 (1)	1.9 (6)
C 7	-0.220 (1)	0.092 (1)	0.483 (2)	2.1 (7)
C 8	-0.181(1)	0.046 (1)	0.542 (1)	1.3 (6)
C 9	-0.200 (1)	0.0763 (8)	0.386 (1)	0.8 (5)
C 10	-0.268 (1)	0.135 (1)	0.086 (1)	1.9 (6)
C 11	-0.324 (1)	0.190 (1)	-0.051 (2)	2.7 (7)
C 12	-0.289 (1)	0.245 (1)	-0.022 (2)	2.9 (8)
C 13	-0.233 (1)	0.1925 (9)	0.114 (1)	2.3 (7)
C 14	-0.243 (2)	0.246 (1)	0.062 (1)	3.0 (7)
C 15	-0.315 (1)	0.135 (1)	0.002 (2)	2.6 (7)
C 16	-0.003 (1)	0.0420 (9)	0.297 (1)	1.1 (5)
C 17	-0.002 (1)	0.097 (1)	0.350 (2)	1.9 (6)
C 18	0.067 (1)	0.133 (1)	0.353 (1)	1.7 (6)
C 19	0.137 (1)	0.115 (1)	0.305 (1)	1.9 (6)
C 20	0.135 (1)	0.058 (1)	0.256 (2)	2.7 (7)
C 21	0.066 (1)	0.021 (1)	0.250 (1)	1.6 (6)
C 22	-0.062 (1)	-0.083 (1)	0.321 (1)	1.6 (6)
C 23	-0.008 (1)	-0.091 (1)	0.391 (1)	1.8 (6)
C 24	0.018 (1)	-0.152 (1)	0.418 (2)	2.2 (6)
C 25	-0.008 (1)	-0.204 (1)	0.370 (2)	2.6 (7)
C 26	-0.064 (1)	-0.196 (1)	0.293 (2)	2.0 (6)
C 27	-0.088 (1)	-0.135 (1)	0.269 (1)	1.7 (6)
C 11	0.3368 (4)	0.1496 (4)	0.2322 (5)	5.0 (3)
C 12	0.3974 (5)	0.2608 (4)	0.1445 (6)	6.4 (3)
C 30	0.384 (1)	0.179 (1)	0.132 (2)	3.2 (7)
$\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{12}(2)$				
atom	x	y	z	$B(e q)$
Mn 1	-0.1398 (1)	-0.1890 (1)	0.4467 (1)	3.4 (1)
Mn 2	-0.0872 (2)	-0.0689 (2)	0.2702 (4)	3.9 (1)
Mn 3	-0.3007 (2)	-0.0688 (2)	0.2964 (4)	3.7 (1)
Mn 4	-0.24745 (8)	-0.1892 (2)	0.1216 (1)	3.5 (1)
S 1	-0.2807 (3)	-0.1764 (2)	0.3076 (5)	3.2 (1)
S 2	-0.1069 (4)	-0.1763 (2)	0.2636 (6)	3.4 (1)
	-0.1554 (4)	-0.0806 (2)	0.4222 (6)	3.9 (2)
	-0.2317 (4)	-0.0816 (2)	0.1447 (6)	3.5 (2)
	-0.024 (1)	-0.1838 (2)	0.548 (2)	3.7 (2)
C 2	-0.133 (1)	-0.272 (2)	0.453 (2)	6.4 (6)
	-0.177 (1)	-0.193 (1)	0.571 (2)	5.8 (7)
C 4	-0.094 (1)	0.010 (1)	0.271 (2)	5.3 (6)
	0.019 (1)	-0.0690 (9)	0.388 (1)	4.1 (5)

TABLE II (Continued)

atom	$\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{12}(2)$			$B(e q)$
	x	y	z	
C 6	-0.052 (1)	-0.068 (1)	0.147 (2)	6.6 (5)
C 7	-0.349 (1)	-0.0707 (8)	0.424 (2)	3.0 (4)
C 8	-0.401 (1)	-0.066 (1)	0.191 (2)	6.5 (8)
C 9	-0.307 (1)	0.0154 (9)	0.282 (2)	4.7 (5)
C 10	-0.210 (1)	-0.194 (1)	-0.012 (2)	4.9 (6)
C 11	-0.257 (1)	-0.2683 (9)	0.138 (2)	3.4 (4)
C 12	-0.354 (1)	-0.190 (1)	0.040 (2)	3.8 (4)
O 1	-0.0430 (7)	-0.1849 (6)	0.592 (1)	6.7 (4)
O 2	-0.120 (1)	-0.3239 (7)	0.439 (2)	7.0 (5)
O 3	-0.206 (1)	-0.194 (1)	0.660 (2)	12.0 (9)
O 4	-0.076 (1)	0.0640 (7)	0.297 (2)	6.8 (4)
O 5	-0.085 (1)	-0.0698 (8)	0.460 (2)	5.9 (4)
O 6	-0.015 (1)	-0.0722 (9)	0.070 (2)	8.3 (7)
O 7	-0.369 (1)	-0.0707 (8)	0.504 (2)	6.7 (6)
O 8	-0.465 (1)	-0.058 (1)	0.114 (2)	7.7 (6)
O 9	-0.294 (1)	0.0635 (8)	0.291 (2)	10.0 (8)
O 10	-0.188 (1)	-0.2046 (9)	-0.085 (2)	8.2 (6)
O 11	-0.261 (1)	-0.3181 (9)	0.121 (2)	10.6 (7)
O 12	-0.428(1)	-0.1871 (7)	-0.018 (2)	6.1 (5)
C 21	-0.364 (1)	-0.223 (1)	0.328 (2)	3.7 (5)
C 22	-0.350 (1)	-0.277 (1)	0.378 (2)	5.2 (5)
C 23	-0.406 (1)	-0.320 (1)	0.412 (2)	6.1 (8)
C 24	-0.486(2)	-0.296 (1)	0.379 (2)	7.4 (8)
C 25	-0.506 (1)	-0.2420 (9)	0.329 (2)	4.8 (5)
C 26	-0.444 (1)	-0.193 (1)	0.294 (2)	7.7 (7)
C 31	-0.022 (1)	-0.2194 (9)	0.237 (1)	3.8 (5)
C 32	0.061 (1)	-0.2004 (7)	0.264 (2)	3.8 (4)
C 33	0.127 (2)	-0.225 (1)	0.250 (3)	5.8 (7)
C 34	0.1063 (9)	-0.284 (1)	0.194 (2)	5.6 (7)
C 35	0.024 (1)	-0.3080 (9)	0.161 (2)	7.1 (6)
C 36	-0.047 (1)	-0.278 (1)	0.179 (2)	5.7 (6)
C 41	-0.268 (1)	-0.032 (1)	0.020 (2)	5.0 (6)
C 42	-0.299 (2)	-0.0590 (9)	-0.088 (2)	11 (1)
C 43	-0.350 (2)	-0.023 (2)	-0.210 (2)	8.3 (8)
C 44	-0.316 (2)	0.039 (1)	-0.202 (4)	15 (2)
C 45	-0.256 (2)	0.059 (1)	-0.097 (2)	7.7 (8)
C 46	-0.234 (2)	0.020 (1)	0.008 (2)	7.3 (7)
C 51	-0.123 (1)	-0.0388 (9)	0.567 (2)	3.9 (4)
C 52	-0.066 (1)	-0.061 (1)	0.671 (2)	9.8 (8)
C 53	-0.071 (3)	-0.022 (2)	0.765 (2)	13 (2)
C 54	-0.073 (1)	0.027 (1)	0.777 (1)	6.4 (5)
C 55	-0.015 (2)	0.055 (2)	0.670 (5)	17 (2)
C 56	-0.147 (2)	0.027 (1)	0.545 (3)	12 (1)
$\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{8}(3)$				
atom	x	\underline{y}	z	$B(e q)$
Mnl	0.13276 (4)	0.83814 (4)	0.20438 (5)	3.42 (2)
Mn2	0.10659 (4)	0.70975 (4)	-0.18826 (5)	3.54 (2)
S 1	0.20149 (7)	0.69498 (6)	0.06953 (8)	3.50 (2)
S 2	0.01387 (7)	0.83689 (7)	-0.06337 (9)	3.71 (2)
C 11	0.2792 (4)	0.9737 (3)	0.2488 (4)	5.4 (1)
C 12	-0.0132 (3)	0.7014 (3)	0.1583 (3)	3.8 (1)

TABLE II (Continued)

atom	$\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{8}(3)$			$B(e q)$
	x	,	z	
C 13	0.0608 (3)	0.9370 (3)	0.2893 (4)	4.6 (1)
C 14	0.2374 (3)	0.8326 (3)	0.3987 (4)	4.6 (1)
C 21	-0.0494 (3)	0.5732 (3)	-0.2532 (4)	4.2 (1)
C 22	0.2584 (3)	0.8496 (3)	-0.1195 (4)	5.3 (1)
C 23	0.1880 (3)	0.6137 (3)	-0.2567 (4)	4.8 (1)
C 24	0.0302 (3)	0.7236 (3)	-0.3823 (4)	4.5 (1)
O 11	0.3678 (3)	1.0576 (3)	0.2821 (4)	9.8 (2)
O 12	-0.0992 (2)	0.6176 (2)	0.1349 (3)	5.8 (1)
O 13	0.0179 (3)	0.9993 (2)	0.3460 (3)	7.5 (1)
O 14	0.3008 (3)	0.8283 (2)	0.5200 (3)	7.4 (1)
O 21	-0.1421 (2)	0.4887 (3)	-0.2944 (3)	6.5 (1)
O 22	0.3468 (3)	0.9346 (2)	-0.0861 (4)	9.1 (1)
O 23	0.2358 (3)	0.5499 (3)	-0.3025 (3)	8.0 (1)
O 24	$\bigcirc 0.0107(2)$	0.7330 (2)	-0.5040 (3)	6.9 (1)
C 31	0.3857 (3)	0.7213 (2)	0.1506 (3)	3.8 (1)
C 32	0.4911 (4)	0.8322 (3)	0.2178 (5)	5.8 (1)
C 33	0.6315 (4)	0.8422 (4)	0.2751 (5)	6.5 (2)
C 34	0.6633 (4)	0.7418 (4)	0.2640 (4)	6.0 (2)
C 35	0.5596 (4)	0.6318 (4)	0.1951 (5)	7.1 (2)
C 36	0.4190 (4)	0.6202 (3)	0.1394 (4)	5.8 (1)
C 41	-0.1741 (3)	0.7688 (3)	-0.1584 (3)	3.9 (1)
C 42	-0.2520 (3)	0.7164 (3)	-0.3245 (4)	4.9 (1)
C 43	-0.3981 (3)	0.6654 (3)	-0.4026 (4)	5.6 (1)
C 44	-0.4671 (3)	0.6675 (3)	-0.3129 (4)	5.8 (1)
C 45	-0.3922 (4)	0.7208 (4)	-0.1493 (5)	6.7 (2)
C 46	-0.2450 (3)	0.7727 (4)	-0.0701 (4)	5.5 (1)
H 32	0.476 (4)	0.904 (4)	0.221 (5)	5.30 (0)
H 33	0.691 (4)	0.924 (4)	0.323 (5)	5.98 (0)
H 34	0.762 (4)	0.756 (3)	0.306 (4)	5.13 (0)
H 35	0.577 (4)	0.563 (4)	0.198 (5)	5.88 (0)
H 36	0.346 (4)	0.541 (3)	0.095 (4)	4.91 (0)
H 42	-0.211 (4)	0.708 (3)	-0.388 (4)	4.22 (0)
H 43	-0.449 (4)	0.630 (3)	-0.520 (5)	4.99 (0)
H 44	-0.568 (4)	0.626 (3)	-0.372 (4)	4.97 (0)
H 45	-0.435 (4)	0.733 (4)	-0.086 (5)	5.46 (0)
H 46	-0.197 (4)	0.803 (3)	0.041 (4)	4.62 (0)

TABLE III Selected interatomic distances (\AA) and angles (deg)

Compound: Distance	$\left[\mathrm{Mn}(\mathrm{CO})_{3} \mathrm{~J}_{2}(\mu-\mathrm{SPh})_{2}(\mu-\mathrm{dppfe}) \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1)\right.$	Distance	$\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{12}(2)$	$M n_{2}(S P h)_{2}(\mathrm{C}$	
Mn... Mn^{\prime}	3.675(5)	Mn1...Mn2	3.613(5)	Mn1...Mn2	3.6206(7)
Mn-P	2.390 (6)	Mn1...Mn3	$3.775(4)$	Mnl-S1	2.391(1)
Mn-S	$2.394(6)$	Mn1...Mn4	3.610(1)	Mn1-S2	2.410(1)
$\mathrm{Mn}-\mathrm{Cl}$	1.80(2)	Mn2...Mn3	$3.639(6)$	$\mathrm{Mn} 2-\mathrm{S} 1$	2.3852(9)
$\mathrm{Mn}-\mathrm{C} 2$	1.84(2)	Mn2...Mn4	$3.767(4)$	Mn2-S2	2.413(1)
Mn-C3	1.78 (2)	Mn3...Mn4	$3.609(5)$	Mn1-C11	1.859(4)
$\mathrm{Fe}-\mathrm{C} 5$	2.02(2)	Mn1-S1	2.395 (5)	Mn1-C12	1.859(3)
$\mathrm{Fe}-\mathrm{C} 6$	2.02(2)	Mn1-S2	2.355 (7)	Mn1-C13	1.816(4)
$\mathrm{Fe}-\mathrm{C} 7$	2.06 (2)	Mn1-S3	2.415 (6)	Mn1-C14	1.820 (4)
$\mathrm{Fe}-\mathrm{C} 8$	2.00(2)	Mn2-S2	2.394(6)	Mn2-C21	1.869(3)
$\mathrm{Fe}-\mathrm{C} 9$	2.04(2)	Mn2-S3	$2.377(9)$	Mn2-C22	$1.858(3)$
S-C10	1.76 (2)	Mn2-S4	2.392(6)	Mn2-C23	1.808(4)
P-C5	1.82(2)	Mn3-S1	2.399(6)	Mn2-C24	1.814(4)
P-C16	1.85 (2)	Mn3--S3	2.401 (6)	S1-C31	$1.798(3)$
P-C22	1.85(2)	Mn3-S4	$2.386(8)$	S2-C41	$1.792(3)$
$\mathrm{Cl}-\mathrm{O} 1$	1.15(3)	Mn4-S1	$2.392(7)$	C11-O11	1.120(4)
$\mathrm{C} 2-\mathrm{O} 2$	1.13(3)	Mn4-S2	$2.405(5)$	C12-012	$1.134(4)$
$\mathrm{C} 3-03$	1.18 (3)	Mn4-S4	$2.396(6)$	C13-013	1.140 (5)
		$\mathrm{Mn} 1-\mathrm{Cl}$	1.91(2)	C14-O14	$1.136(4)$
		$\mathrm{Mn} 1-\mathrm{C} 2$	1.84(2)	C21-021	$1.130(4)$
		Mn1-C3	1.73(3)	C22-022	$1.128(5)$
		Mn2-C4	1.74(2)	$\mathrm{C} 23-\mathrm{O} 23$	1.146(5)
		Mn2-C5	1.86(2)	$\mathrm{C} 24-024$	1.139(5)
		Mn2-C6	1.70(3)		
		Mn3-C7	1.88(2)		
		Mn3-C8	1.72(2)		
		Mn3-C9	1.86(2)		
		Mn4-C10	1.84(2)		
		Mn4-C11	1.77(2)		
		Mn4-C12	1.72(2)		
		S1-C21	1.80(2)		

TABLE III (Continued)

TABLE III (Continued)

Compound: Distance	$\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]_{2}(\mu-\mathrm{SPh})_{2}(\mu$-dppfe $) \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{I})$	Distance	$\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{12}(2)$	$\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{8}$	
		S2-Mnl-Cl	94.1(8)	C21-Mn2-C23	89.7(2)
		S2-Mn1-C2	97 (1)	C21-Mn2-C24	92.7(1)
		S2-Mn1-C3	172.3(8)	$\mathrm{C} 22-\mathrm{Mn} 2-\mathrm{C} 23$	92.8(2)
		S3-Mn1-C1	93.6(6)	C22-Mn2-C24	87.6(2)
		S3-Mn1-C2	175.7(7)	C23-Mn2-C24	91.2(2)
		S3-Mn1-C3	95.8(9)	Mnl-S1-C31	118.4(1)
		S2-Mn2-C4	168.6(8)	Mn1-S1-C41	113.9(1)
		S2-Mn2-C5	96.3(6)	Mn2-S1-C31	11.6(1)
		S2-Mn2-C6	93.3(8)	Mn2-S2-C41	110.8(1)
		S3-Mn2-C4	93 (1)		
		S3-Mn2-C5	91.09(7)		
		S3-Mn2-C6	170.1(7)		
		S4-Mn2-C4	93.7(7)		
		S4-Mn2-C5	168.7(7)		
		S4-Mn2-C6	92.1(7)		
		S1-Mn3-C7	91.2(6)		
		S1-Mn3-C8	98.8(8)		
		S1-Mn3-C9	174.(4)		
		S3-Mn3-C7	96.6(5)		
		S3-Mn3-C8	171.9(9)		
		S3-Mn3-C9	100.4(6)		
		S1-Mn4-Cl0	173.0(7)		
		S1-Mn4-C11	88.2(7)		
		S1-Mn4-C12	90.2(8)		
		S2-Mn4-C10	94.0(6)		
		S2-Mn4-C11	98.1(5)		
		S2-Mn4-Cl2	168.5(8)		
		S4-Mn4-Cl0	95.4(8)		
		S4-Mn4-C11	167.8(7)		
		$\mathrm{S} 4-\mathrm{Mn} 4-\mathrm{C} 12$	97.2(8)		

RESULTS AND DISCUSSION

Our first objective for reaction of $\mathbf{2}$ with dppfe after treatment with $\mathrm{Me}_{3} \mathrm{NO}$ was to synthesize a dppfe-briged dimer such as $\left[\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{11}\right]_{2}(\mu$-dppfe $)$. However, the product obtained is $\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]_{2}(\mu \text { - } \mathrm{SPh})_{2}(\mu$-dppe $)(\mathbf{1})$ as described in the Experimental section. This suggested that the tetramer 2 was degraded to dimer, $\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{6}$ by treatment with $\mathrm{Me}_{3} \mathrm{NO}$ and this dimer was reacted with dppfe to yield 1 . Therefore, we have attempted reaction of 3 with dppfe after treatment with $\mathrm{Me}_{3} \mathrm{NO}$, which is an excellent decarbonylating reagent. The same product 1 is obtained in improved yield. Next, we attempted thermal reaction of $\mathbf{2}$ with dppfe; equimolar amounts of $\mathbf{2}$ and dppfe were heated at $80^{\circ} \mathrm{C}$ in toluene for 3 h . However, no reaction took place except decomposition. These findings suggest that degradation of the tetramer 2 by treatment with an oxidizing reagent $\mathrm{Me}_{3} \mathrm{NO}$ is a key step for the formation of $\mathbf{1}$. Fading of orange-color of 2 by treatment with $\mathrm{Me}_{3} \mathrm{NO}$ also supports degradation of the tetramer. We do not have further evidence at present on whether the degraded fragment is dimer, $\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{6}$ or a monomer such as $\mathrm{Mn}(\mathrm{SPh})(\mathrm{CO})_{3}$. Therefore, discussion of the reaction mechanism is left for future exploration. At present we would like to comment that this study is a paradigm for easy degradation of large clusters to small clusters by an oxidizing reagent, $\mathrm{Me}_{3} \mathrm{NO}$.

Figure 1 shows the molecular structures of $\mathbf{1}$ and the molecular structures of 2 and 3 are shown in Figures 2 and 3. As seen from Figure 1, the iron atom contained in the dppfe moiety of $\mathbf{1}$ lies on the twofold axis. The $\mathrm{Mn} \cdots \mathrm{Mn}$ distance $3.675(5) \AA$ in $\mathbf{1}$ is longer than that of $\mathbf{3}$ (3.6206(7) \AA). However, this distance is intermediate compared with those of the cubane-like tetramer, 2; the cubane framework is composed from two long Mn \cdots Mn distances (3.767(4) $-3.775(4) \AA$) and four short $\mathrm{Mn} \cdots \mathrm{Mn}$ distances (3.610(1) - $3.639(6) \AA$). The Mn—S bond length of $1(2.392(7) \AA)$ is close to those of $2(2.355(7)-$ $2.415(6) \AA$) and $3(2.391(1)-2.413(1) \AA)$. The geometry around the manganese atom in 1 is significantly distorted from a regular octahedral arrangement (the $\mathrm{S}-\mathrm{Mn}$ —S angle is $\left.75.8(2)^{\circ}\right)$. However, distortion from regular octahedral arrangement is lessened in $\mathbf{3}$; the $\mathrm{S}-\mathrm{Mn}-\mathrm{S}$ angle is $81.71(3)^{\circ}$ and $81.77(3)^{\circ}$. The $\mathrm{S} — \mathrm{Mn}-\mathrm{S}$ angles in 2 are classified into two types; eight $\mathrm{S}-\mathrm{Mn}-\mathrm{S}$ angles are around $80^{\circ}\left(79.1(1)-80.6(2)^{\circ}\right)$ and four $\mathrm{S}-\mathrm{Mn}-\mathrm{S}$ angles are around $76^{\circ}\left(76.0(2)-76.4(2)^{\circ}\right)$. This may be compared with two types of $\mathrm{Mn} \cdots \mathrm{Mn}$ distances in 2. The Mn-C bond lengths (1.78(2)-1.80(2) \AA) trans to the $\mathrm{Mn}-\mathrm{S}$ bonds are shorter than that (1.84(2) \AA) trans to the $\mathrm{Mn}-\mathrm{P}$ bond in 1. A similar trend is observed in 3 , the $\mathrm{Mn}-\mathrm{C}$ bond lenghts trans to the $\mathrm{Mn}-\mathrm{S}$ bonds are in the range $1.808(4)-1.820(4) \AA$, while the $\mathrm{Mn}-\mathrm{C}$ bond lengths cis to the $\mathrm{Mn}-\mathrm{S}$ bond are in the range $1.858(3)-1.869(3) \AA$. For 2 ,
all $\mathrm{Mn}-\mathrm{C}$ bonds are trans to $\mathrm{Mn} — \mathrm{~S}$ bonds. Coordination of dppfe to the manganese atoms does not bring essential structural change but significant distortion from the octahedral arrangement because of steric repulsion among the four phenyl groups in 1.

FIGURE 1 Molecular structure of $\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]_{2}(\mu-\mathrm{SPh})_{2}(\mu$-dppfe $)(\mathbf{1})$.

FIGURE 2 Molecular structure of $\mathrm{Mn}_{4}(\mathrm{SPh})_{4}(\mathrm{CO})_{12}$ (2).

FIGURE 3 Molecular structure of $\mathrm{Mn}_{2}(\mathrm{SPh})_{2}(\mathrm{CO})_{8}(\mathbf{3})$.
Cyclic voltammetric measurements were also made for these series of compounds expecting multi-redox processes as in $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ clusters; ${ }^{1}$ however, only decomposition was observed during CV measurements.

Acknowledgments

The present research was supported by The DAIKOU FOUNDATION and Tokai Foundation for Technology.

References

[1] R.H. Holm, Chem. Soc. Rev., 10, 455 (1981); J.M. Berg, K.O. Hodgson and R.H. Holm, J. Am.Chem. Soc., 101, 4586 (1979); C.W. Carter, Jr., Iron-Sulfur Proteins, ed. by W. Lovenberg, Academic Press, New York, 3, Chapter 6 and references therein; (1977);
[2] T. Shibahara, S. Mochida and G. Sakane, Chem. Letters, 89 (1993); T. Shibahara, M. Yamasaki, T. Watase and A. Ichimura, Inorg. Chem, 33, 292 (1994); L. Cai and R.H. Holm, J. Am. Chem. Soc., 116, 7177 (1994); J.-F. You, G.C. Papaefthymiou and R.H. Holm, J. Am. Chem. Soc., 114, 2697 (1992); S. Dehnen, A. Schäfer, D. Fenske and R. Ahlrichs, Angew. Chem. Int. Ed. Engl., 33, 746 (1994); A. Müller and E. Krahn, Angew. Chem. Int. Ed. Engl., 34, 1071 (1995); L. Cai, B.M. Segal, J.R. Long, M.J. Scott and R.H. Holm, J. Am. Chem. Soc., 117, 8863 (1995) and references therein.
[3] S. Onaka, M. Otsuka, A. Mizuno, S. Takagi, K. Sako and M. Otomo, Chem. Letters, 45 (1994); S. Onaka and M. Otsuka, Chem. Letters, 269 (1995); S. Onaka, M Otsuka, S. Takagi and K. Sako, J. Coord. Chem., 37, 151 (1996).
[4] E.W. Abel and B.C. Crosse, J. Chem. Soc. (A), 1141 (1966); B.F.G. Johnson, P.J. Pollick, I.G. Williams and A. Wojcicki, Inorg. Chem., 7, 831 (1968); C.R. Jenkins, J. Organomet. Chem., 15, 441 (1968); P.M. Treichel and M.H. Tegen, Inorg. Synthesis, (H.R. Allcock, ed. John Wiley \& Sons, New York, 1989), 25, 115 and references therein.

[^0]: * Authors for correspondence

